NUTRITION SUPPORT FOR CANCER PATIENTS

Mohandas K. Mallath, M.D., DNB
Senior Consultant in Digestive Diseases
TATA MEDICAL CENTER- KOLKATA
mohandaskm@gmail.com
Learning Objectives

- Understand India’s growing cancer problem
- Understand nutritional problems of cancer patients
- Highlight issues that are related to providing nutrition support
- Share some of our experience and data
The growing burden of cancer in India: epidemiology and social context.

Mallath MK¹, **Taylor DG**², **Badwe RA**³, **Rath GK**⁴, **Shanta V**⁵, **Pramesh CS**³, **Digumarti R**⁶, **Sebastian P**⁷, **Borthakur BB**⁸, **Kalwar A**⁹, **Kapoor S**¹⁰, **Kumar S**¹¹, **Gill JL**², **Kuriakose MA**¹², **Malhotra H**¹³, **Sharma SC**¹⁴, **Shukla S**¹⁵, **Viswanath L**¹⁶, **Chacko RT**¹⁷, **Pautu JL**¹⁸, **Reddy KS**¹⁹, **Sharma KS**³, **Purushotham AD**²⁰, **Sullivan R**²¹.

Author information

Abstract

Cancer can have profound social and economic consequences for people in India, often leading to family impoverishment and societal inequity. Reported age-adjusted incidence rates for cancer cases and mortality rates in various regions of India are shown below:

<table>
<thead>
<tr>
<th>Region or Country</th>
<th>Incident cases</th>
<th>Mortality cases</th>
<th>Incidence ASR</th>
<th>Mortality ASR</th>
<th>Mortality to Incidence ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHHDI</td>
<td>5780821</td>
<td>2606104</td>
<td>279.2</td>
<td>105.3</td>
<td>37.7</td>
</tr>
<tr>
<td>HDI</td>
<td>2126439</td>
<td>1244496</td>
<td>180.2</td>
<td>102.3</td>
<td>56.8</td>
</tr>
<tr>
<td>MHDI</td>
<td>5232474</td>
<td>3656562</td>
<td>144.2</td>
<td>102.8</td>
<td>70.9</td>
</tr>
<tr>
<td>LHDI</td>
<td>943102</td>
<td>690141</td>
<td>112.8</td>
<td>86.7</td>
<td>76.9</td>
</tr>
<tr>
<td>India</td>
<td>1014934</td>
<td>682830</td>
<td>94.0</td>
<td>64.5</td>
<td>68.6</td>
</tr>
</tbody>
</table>

HHDI= High Human Development Index, LHDI= Low Human Development Index
Cancer is a disease of elderly
Age specific incidence rates of all cancers

India
China
Russia
Malnutrition significantly increases the post-op morbidity, mortality & costs

541 patients undergoing major cancer surgery

A cancer specialist, Dr. Mohandas K. Mallath has seen it all. But he still remembers how helpless he felt a couple of years ago, when he met Dr. Kumar (name changed). Her husband, a middle-aged doctor like her, had a rare form of cancer. The Kumars had spent Rs 6 lakh in just one year on the treatment. They had to slowly sell most of their assets to meet the high cost of cancer treatment.

"Her ornaments disappeared during each follow-up visit for review. Arms barren, there was only a mangalsutra hanging on a thread around her neck during one visit," recalls Dr. Mallath, who has been working at the Tata Medical Centre (TMC), Calcutta, since 2012. For 24 years he had been at the Tata Memorial Hospital (TMH) in Mumbai and had witnessed the struggles of countless such patients.

These cases inspired the oncologist to explore the socio-economic context of cancer in India as part of a commission of global cancer experts. Their series of papers published last month in the journal *Lancet Oncology* focused on the escalating cost of cancer treatment and its impact in the country.

Ironically, as treatment for cancer gets better and better, most Indians are finding it more and more difficult to fight the disease, thanks to exorbitant drug prices and multiple diagnostic tests.

Take the case of Rubeena (not her real name). She was 29 when she discovered she had breast cancer. Within months, the malignancy had spread to the whole of her right breast. The breast was removed, but she is still undergoing treatment a year after the tumour was detected.

Her life can be saved. A drug called herceptin, marketed by Swiss pharmaceutical company Roche, is extremely effective in battling this type of cancer. But each injection costs Rs 80,000—10 times the sum her husband earns from his Unani medicine store in Burdwan’s Raniganj every month. And Rubeena needs 12 such shots.

If you get cancer, the chances are high that you’ll become a pauper, warn T.V. Jayan and Prasun Chaudhuri, thanks to the soaring costs of cancer drugs and treatment.
Factors Abetting Cancer Malnutrition

Before Hospital After

Ageing Poverty Nonavailability Pain/Anorexia Loneliness Depression Dementia Food fads Ignorance Others

Not screened Fear/ anxiety Investigations Starvation Nil by mouth Pain & distress Poor appetite Food choices GI problems Others

STRESS Sepsis Surgery Fever Disease flare Chemotherapy Constipation Sedation Radiotherapy Others

No discharge advice Limited choices No supervision Loneliness Medications Depression Forgetful Fads Self medication Others
Nutritional Goals in Oncology

• Improve tolerance and completion of treatment on time with out any protocol deviation
 – Preserve lean body mass
 – Improve strength and energy.
 – Protect immune function
 – Decrease the risk of infection.
 – Enhance healing and recovery
 – Maximize quality of life.
Non-nutritional risk factors in cancer

• Severe immune suppression
• Mucosal lining is often disrupted
• Gut motility is altered- Satiety, vomiting, etc.
• Energy and protein requirements are higher
• Treatments lasts for several months
• Need money for many things
Warburg Effect: Metabolic Inefficiency During Cell Proliferation

Differentiated tissue

Glucose $\xrightarrow{+O_2}$ Pyruvate $\xrightarrow{O_2}$ CO$_2$

Glucose $\xrightarrow{-O_2}$ Lactate

Oxidative phosphorylation
-36 mol ATP/mol glucose

Anaerobic glycolysis
2 mol ATP/mol glucose

Proliferative tissue

Glucose $\xrightarrow{+/-O_2}$ Pyruvate

5% Aerobic glycolysis (Warburg effect)
-4 mol ATP/mol glucose

85% Lactate

Tumor

Glucose $\xrightarrow{+/-O_2}$ Pyruvate $\xrightarrow{O_2}$ CO$_2$

Lactate

Vander Heiden MG et al. Science 2009
Variable REE in Indian Cancer Patients

- REE estimated using the metabolic cart-(Vista MX-VacuMed, USA).
- O2 consumed & CO2 produced by the patient was determined.
- REE was estimated using the Weir equation
- \[\text{REE} = [3.9 \times \text{VO2} + 1.1 \times \text{VCO2}] \times 1.44 \times \text{RQ: VCO2/VO2} \]

<table>
<thead>
<tr>
<th>REE Equation</th>
<th>r2</th>
<th>95% CI of r2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harris Benedict</td>
<td>0.21</td>
<td>-0.07 – 0.46</td>
</tr>
<tr>
<td>Fleisch</td>
<td>0.28</td>
<td>-0.04 – 0.48</td>
</tr>
<tr>
<td>WHO</td>
<td>0.24</td>
<td>0.01- 0.52</td>
</tr>
</tbody>
</table>

Shirodkar, Mohandas et al. IJG 2007, Abstract
Enhanced Recovery After Surgery: ERAS?

- Minimise Perioperative stress response
 - Optimise pre-op conditions
 - Optimise peri-operative care
 - Optimise post-op rehabilitation
- Start postop treatments early

![Graph showing comparison between traditional care and enhanced recovery]

Enhancing Recovery after GI surgery
Nutritional problems of patients undergoing radiotherapy (125) and chemotherapy (125)
Clinical Nutrition Support means different things to different staff.
Malnutrition: one size won’t fit all

Providing a clear and substantial improvement to the clinical outcome of malnutrition patients can only be achieved if clinicians begin to identify and overcome the current problems associated with nutrition support.

Malnutrition is the commonest co-morbid disease found in patients at hospitals and in the communities where people dwell. The prevalence of malnutrition among hospitalised patients is known to vary widely between 20% and 80% depending on the criteria used and the nature of the healthcare setting (e.g. Intensive Care Unit). Nutrition therapy was the most important component of medical treatment before the discovery of antibiotics. Sadly, malnutrition has continued to remain a major problem in communities and hospitals in all parts of the world, in spite of all the scientific evidence of nutrition screening and intervention have come in small increments. The results of most all randomised clinical trials using intensive and expensive nutrition support during the treatment of different disease states has not been spectacular in terms of reducing the overall mortality that we have aimed for. Furthermore, the end results if nutritional have varied considerably among different disease and their treatment settings. Some of the better results were seen in patients undergoing surgery for upper digestive cancer. On the other hand the use of routine nutrition support by total parenteral nutrition during cytotoxic
Clinical Nutrition Mantra (4R)

RIGHT feeds in RIGHT amounts at RIGHT time to RIGHT Patients

RIGHT feeds in RIGHT amounts at RIGHT time to RIGHT Patients

RIGHT feeds in RIGHT amounts at RIGHT time to RIGHT Patients

RIGHT feeds in RIGHT amounts at RIGHT time to RIGHT Patients
Good nutrition support needs multidisciplinary teams
5-Fold Path of Clinical Nutrition

1. Screen, assess and grade malnutrition
2. Establish appropriate route for feeding
3. Calculate the macro and micro needs
4. Deliver the nutrients without losses
5. Monitor & Audit the above process
By 2010 our group had, 3 coordinators, 5 dieticians, 2 nurses treating ~ 2500 patients a year.
Screening and Assessment
Co-exiting Double Burden.
Underweight and overweight in women

Q1	Q2	Q3	Q4	Q5
BMI<18.5 | BMI>25

National Family Health Survey – 2005-06
Subjective Global Assessment (SGA)

Detsky, et al., JPEN 1987; 11: 8-13

<table>
<thead>
<tr>
<th>History</th>
<th>Physical</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Weight loss</td>
<td>- Subcutaneous fat</td>
</tr>
<tr>
<td>- Nutritional intake</td>
<td>- Muscle mass</td>
</tr>
<tr>
<td>- GI symptoms</td>
<td>- Edema</td>
</tr>
<tr>
<td>- Functional capacity</td>
<td>- Ascites</td>
</tr>
<tr>
<td>- Severity of disease</td>
<td></td>
</tr>
</tbody>
</table>

Subjective Assessment:

- **A** = well nourished
- **B** = suspect of or moderately malnourished
- **C** = severely malnourished

Copyright © 2006 by ESPEN
Subjective global assessment: a simple and reliable screening tool for malnutrition among Indians

M Shirodkar, K M Mohandas

Department of Digestive Diseases and Clinical Nutrition, Tata Memorial Hospital, Mumbai 400 012

Background and Aims: Subjective global assessment (SGA) is a simple and reliable malnutrition-screening tool. The SGA has not been evaluated in India or in populations where chronic energy deficiency (CED) is rampant. We evaluated the value of preoperative nutrition, determined using the SGA, in predicting postoperative adverse outcomes in cancer patients. Methods: Two hundred and ninety-

Conclusion:

SGA is a simple and inexpensive way to identify clinically relevant malnutrition in Indian patients undergoing cancer surgery. Low BMI was not associated with postoperative adverse outcomes, and its use for nutritional screening is likely to overestimate severe malnutrition in Indian patients.

[Indian J Gastroenterol 2005;24:246-250]
Malnutrition & postop outcome-SGA vs. MUST

<table>
<thead>
<tr>
<th>Outcome Variable</th>
<th>Nil-Mild</th>
<th>Moderate</th>
<th>Severe</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUST Tool</td>
<td>A(149)</td>
<td>B(106)</td>
<td>C(286)</td>
<td>541</td>
</tr>
<tr>
<td>Any adverse events</td>
<td>121</td>
<td>37</td>
<td>39</td>
<td>0.003</td>
</tr>
<tr>
<td>Major event</td>
<td>32</td>
<td>14</td>
<td>13</td>
<td>0.5</td>
</tr>
<tr>
<td>30-day Mortality</td>
<td>12</td>
<td>5</td>
<td>3</td>
<td>0.4</td>
</tr>
<tr>
<td>Post Op days(median)</td>
<td>10.0</td>
<td>11.0</td>
<td>10.7</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Malnutrition & postop outcome-SGA vs. MUST

<table>
<thead>
<tr>
<th>Outcome Variable</th>
<th>Nil-Mild</th>
<th>Moderate</th>
<th>Severe</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUST Tool</td>
<td>A(149)</td>
<td>B(106)</td>
<td>C(286)</td>
<td>541</td>
</tr>
<tr>
<td>Any adverse events</td>
<td>121</td>
<td>37</td>
<td>39</td>
<td>0.003</td>
</tr>
<tr>
<td>Major event</td>
<td>32</td>
<td>14</td>
<td>13</td>
<td>0.5</td>
</tr>
<tr>
<td>30-day Mortality</td>
<td>12</td>
<td>5</td>
<td>3</td>
<td>0.4</td>
</tr>
<tr>
<td>Post Op days(median)</td>
<td>10.0</td>
<td>11.0</td>
<td>10.7</td>
<td>0.32</td>
</tr>
<tr>
<td>SGA Tool</td>
<td>A(259)</td>
<td>B(199)</td>
<td>C(84)</td>
<td>541</td>
</tr>
<tr>
<td>Any adverse events</td>
<td>62</td>
<td>85</td>
<td>50</td>
<td>0.0000</td>
</tr>
<tr>
<td>Major event</td>
<td>16</td>
<td>27</td>
<td>16</td>
<td>0.001</td>
</tr>
<tr>
<td>30-day Mortality</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>0.004</td>
</tr>
<tr>
<td>Post Op days(median)</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Using a BMI based tool will over-diagnose severe malnutrition in Indians.

- 250 patients had BMI < 18.5
- MUST
- SGA

One year overall survival by SGA groups and IPI groups using Kaplan Meir survival analysis

All NHL patients (401) screened for malnutrition

This study received Travel Award for ESMO 2011
Subjective Global Assessment (SGA)

Detsky, et al., JPEN 1987; 11: 8-13

History
- Weight loss
- Nutritional intake
- GI symptoms
- Functional capacity
- Severity of disease

Physical
- Subcutaneous fat
- Muscle mass
- Edema
- Ascites

Subjective Assessment:
- **A** = well nourished
- **B** = suspect of or moderately malnourished
- **C** = severely malnourished

Copyright © 2006 by ESPEN
Malnutrition status of 17562 cases in one decade at TMH- 2000-2009

A, 3017
B, 8910
C, 5635
<table>
<thead>
<tr>
<th>Grade malnutrition</th>
<th>Risk from cancer treatment</th>
<th>Usual nutrition intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGA-A</td>
<td>Low risk therapy</td>
<td>Eating hints, reassessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High risk therapy</td>
<td>Eating hints, Supplements, Tube feedings, SPN</td>
</tr>
<tr>
<td>SGA-B</td>
<td>Low risk therapy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High risk therapy</td>
<td>INTENSIVE NS, Tube feedings, TPN Monitor intake, N2 balance</td>
</tr>
<tr>
<td>SGA-C</td>
<td>Low risk therapy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High risk therapy</td>
<td></td>
</tr>
</tbody>
</table>
Routes for feeding

• Oral feeds/ Supplements
• Tube feedings
 – NJT, NJT, NET
 – PEG, REG, SG, PEJ, SJ
• Parenteral feeding
 – PPN or TPN
• Combination/ Supplemental
Eating Well During and After Your Cancer Treatment

This information will help you maintain your nutrition during and after your cancer treatment.

Good nutrition is very important for patients with cancer. There may be some nutritional changes you can make now that will help you during treatment. Start by eating a healthy diet. This can increase your strength, help you maintain your weight, and help you fight infection. It may even help with the side effects of treatment.

My Plate

My Plate is a picture of a place setting that shows what a healthy meal should look like. It includes the 5 food groups that are the building blocks of a healthy diet. These groups include whole grains, fruits, vegetables, lean proteins, and low-fat dairy products. Foods that are high in fat and sugar should be limited or avoided. For more information about the My Plate guidelines, visit www.myplate.gov.

The side effects of cancer and treatment can make it hard to eat. When this happens, it may be difficult for you to follow the My Plate guidelines. You may need to change your eating plan if you can’t eat certain foods.
Food and beverage safety

• It is very important to make sure that the F&B are safe to reduce the risk for foodborne illnesses & other infections.
 ✓ While preparing food, wash your hands well with soap and warm water. Clean your cutting boards and counters thoroughly.
 ✓ Avoid eating any foods that have raw or undercooked eggs, meat, poultry, fish, or shellfish. Make sure that these raw foods or their juices never come in contact with other foods.
 ✓ Eat only pasteurized milk and cheeses. Drink only processed or pasteurized juices and ciders.
 ✓ Wash all raw fruits and vegetables well before eating, even if you are going to peel the skin off.
 ✓ Thaw frozen foods in the refrigerator. Do not leave them out to thaw at room temperature.
 ✓ After cooking, cool foods in the refrigerator. Do not let them cool at room temperature.

• If the immune system gets weaker (e.g. BMT), ask to follow stricter guidelines.
Contamination of blenderized formulas

• Locally prepared and manipulated diets had more coliforms than pasteurized milk.
 – Anderson et al. JPEN 1984

• The use of “natural” food in blenderized formulas causes a major variance in nutrients and bacterial contamination as compared to reconstituted commercial formulas.
 – Mitne C et al. Brazilian journal of Clin Nutr

• Hospital prepared blenderized enteral tube feedings provide unpredictable micro and macronutrients and deliver less than the desired amounts of nutrients.
 – APJCN 2004
Handling and re-use

- Risk of bacterial contamination if feeding systems are not carefully handled. Observe the Following:
 - Connections should be minimized
 - Same bag/tube should never be used on more than one patient
 - Giving sets should be changed at least every 24 h.
 - Reservoirs should only be used for 24 h after which they should be thoroughly cleaned/sterilized before re-use
 - Feeds should not be hung for longer than the recommended period
 - Scrupulous hand washing before handling feeds is mandatory
 - Feeding tubes should be flushed adequately after each feed
What formulas to use in oncology

• **In general cancer patients needs:**
 – More calories and proteins
 – Formulations should be free of contamination
 – Easy to swallow or use with easily acceptable taste
 – EPA supplementation helps take care of the inflammatory component of cancer cachexia and improve many secondary endpoints

• **Specific nutritional is offered depending on the co-morbidity or treatments being carried out:**
 – Diabetic, Renal
 – Perioperative immune nutrition
 – Bone marrow transplant
CONCLUSION: Enteral nutrition with EPA and DHA may be advantageous in patients with head and neck and esophageal cancer undergoing chemoradiotherapy: results of a randomized, controlled, multicenter trial.

Fietkau R¹, Lewitzki V, Kuhnt T, Hölscher T, Hess CF, Berger B, Wiegel T, Rödel C, Niewald M, Hermann RM, Lubgan D.

Author information

Abstract

BACKGROUND: In patients with head and neck and esophageal tumors, nutritional status may deteriorate during concurrent chemoradiotherapy (CRT). The aim of this study was to investigate the influence of enteral nutrition enriched with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on body composition and nutritional and functional status.

METHODS: In a controlled, randomized, prospective, double-blind, multicenter study, 111 patients with head and neck and esophageal cancer undergoing concurrent CRT received either an enteral standard nutrition (control group) or disease-specific enteral nutrition Supportan®-containing EPA+DHA (experimental group) via percutaneous endoscopic gastrostomy. The

CONCLUSION: Enteral nutrition with EPA and DHA may be advantageous in patients with head and neck or esophageal cancer by improving parameters of nutritional and functional status during CRT.
Probiotics

• In general avoid probiotics in patients with immunosuppression
• Probiotics are useful in patients receiving pelvic radiotherapy
Specialized Feeding in Oncology
Cost alone favors EN

NET x 7 days
- Endoscopy (5000)
- Tube (1000)
- Consult (2000)
- Formula feeds (2000)
- Hospitalization (2000)

Total cost: Rs. 12000

TPN x 7 days
- Consult (2000)
- PICC line (6000)
- Labs (2000)
- TiO formula (14000)
- Hospitalization (14000)

Total cost: Rs. 38000

EN = Rs250 - TPN = Rs2500/day
Audit of our NST services[n=30811]

<table>
<thead>
<tr>
<th>ROUTE</th>
<th>1999-03</th>
<th>2004-08</th>
<th>2009-13</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORAL</td>
<td>2824</td>
<td>7583</td>
<td>9927</td>
<td>20334</td>
</tr>
<tr>
<td>EN (All)</td>
<td>2450</td>
<td>3632</td>
<td>3454</td>
<td>9536</td>
</tr>
<tr>
<td>NGT</td>
<td>1726</td>
<td>1986</td>
<td>2335</td>
<td>6047</td>
</tr>
<tr>
<td>PEG</td>
<td>162</td>
<td>997</td>
<td>220</td>
<td>1379</td>
</tr>
<tr>
<td>SGT</td>
<td>16</td>
<td>6</td>
<td>6</td>
<td>28</td>
</tr>
<tr>
<td>NET</td>
<td>111</td>
<td>197</td>
<td>429</td>
<td>737</td>
</tr>
<tr>
<td>SJT</td>
<td>251</td>
<td>111</td>
<td>42</td>
<td>404</td>
</tr>
<tr>
<td>PN (All)</td>
<td>184</td>
<td>335</td>
<td>422</td>
<td>941</td>
</tr>
</tbody>
</table>
“If the gut works, we shall reach it and use it”
Conclusions
Enteral feeding tubes can be placed in almost all patients with cancer using endoscopic techniques. Adequate training of the endoscopy fellows and sufficient care by nutrition support team help achieve high success with few complications.

Aliment Pharmacol Ther 27, 649–658

98% Success, Minimal morbidity, No mortality

If you don’t reach it you won’t use it
One tube won’t suit all
Comparison of various enteral access

<table>
<thead>
<tr>
<th>ROUTE</th>
<th>ADVANTAGE</th>
<th>DISADVANTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>Natural, no cost</td>
<td>Patient dependant intake</td>
</tr>
<tr>
<td>NGT</td>
<td>Easy to pass, cheap, wide availability</td>
<td>Disfigurement, GER Discomfort, Migration</td>
</tr>
<tr>
<td>NET</td>
<td>Reduced GER Overcomes gastroparesis</td>
<td>Disfigurement, Expertise Special tube & formula, Migration</td>
</tr>
<tr>
<td>PEG PEJ</td>
<td>Cosmetic, large lumen, long life</td>
<td>Cost, Expertise, Pain, Complications, GER</td>
</tr>
<tr>
<td>SG/SJ</td>
<td>Done during surgery</td>
<td>Surgery, More morbidity, Cost</td>
</tr>
</tbody>
</table>
Choosing the feeding route

<table>
<thead>
<tr>
<th>DURATION</th>
<th>Low risk of aspiration</th>
<th>High risk of aspiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 4 weeks</td>
<td>NGT</td>
<td>NET</td>
</tr>
<tr>
<td>More than 4 weeks</td>
<td>PEG</td>
<td>PEJ, JET-PEG</td>
</tr>
</tbody>
</table>

Note: Post pyloric feeding doesn’t guarantee the prevention of GER
TPN AUDIT (n=941)

<table>
<thead>
<tr>
<th>Category</th>
<th>No</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referred for TPN</td>
<td>941</td>
<td>100</td>
</tr>
<tr>
<td>TPN Not Indicated</td>
<td>182</td>
<td>19</td>
</tr>
<tr>
<td>No TPN/ Functioning gut</td>
<td>54</td>
<td>6/30</td>
</tr>
<tr>
<td>TPN Done</td>
<td>759</td>
<td>81</td>
</tr>
</tbody>
</table>
Site of primary cancer

<table>
<thead>
<tr>
<th>Type of cancer</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal- Luminal</td>
<td>349</td>
<td>46.0</td>
</tr>
<tr>
<td>Hematolymphoid</td>
<td>122</td>
<td>16.1</td>
</tr>
<tr>
<td>Genitourinary</td>
<td>108</td>
<td>14.2</td>
</tr>
<tr>
<td>Hepato-Pancreatico-Biliary</td>
<td>104</td>
<td>13.7</td>
</tr>
<tr>
<td>Gynecological</td>
<td>20</td>
<td>2.6</td>
</tr>
<tr>
<td>Bone and Soft tissue</td>
<td>20</td>
<td>2.6</td>
</tr>
<tr>
<td>Head and Neck</td>
<td>16</td>
<td>2.1</td>
</tr>
<tr>
<td>Others</td>
<td>14</td>
<td>1.7</td>
</tr>
<tr>
<td>Noncancerous</td>
<td>6</td>
<td>0.8</td>
</tr>
<tr>
<td>Total</td>
<td>759</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Indication for TPN

<table>
<thead>
<tr>
<th>Indication</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intestinal obstruction</td>
<td>184</td>
<td>24.2</td>
</tr>
<tr>
<td>Postoperative support</td>
<td>114</td>
<td>15.0</td>
</tr>
<tr>
<td>Post op leaks</td>
<td>97</td>
<td>12.8</td>
</tr>
<tr>
<td>Hypoalbuminemia</td>
<td>73</td>
<td>9.6</td>
</tr>
<tr>
<td>Fistula</td>
<td>59</td>
<td>7.8</td>
</tr>
<tr>
<td>Enterocolitis</td>
<td>41</td>
<td>5.4</td>
</tr>
<tr>
<td>Poor oral intake</td>
<td>35</td>
<td>4.6</td>
</tr>
<tr>
<td>Preoperative buildup</td>
<td>27</td>
<td>3.6</td>
</tr>
<tr>
<td>Intestinal perforation</td>
<td>22</td>
<td>2.9</td>
</tr>
<tr>
<td>Mucositis</td>
<td>19</td>
<td>2.5</td>
</tr>
<tr>
<td>Pancreatitis</td>
<td>15</td>
<td>2.0</td>
</tr>
<tr>
<td>Paralytic ileus</td>
<td>13</td>
<td>1.7</td>
</tr>
<tr>
<td>Burst abdomen</td>
<td>11</td>
<td>1.4</td>
</tr>
<tr>
<td>Poor nutritional status</td>
<td>8</td>
<td>1.1</td>
</tr>
<tr>
<td>Others</td>
<td>41</td>
<td>5.2</td>
</tr>
</tbody>
</table>
Early mortality in three periods

- 1999-2003: 144 Given PN, 41 Deaths
- 2004-2008: 252 Given PN, 53 Deaths
- 2009-2013: 363 Given PN, 52 Deaths
Complications overview

<table>
<thead>
<tr>
<th>Type of complications</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any complication</td>
<td>177</td>
<td>23.3%</td>
</tr>
<tr>
<td>Metabolic complications</td>
<td>108</td>
<td>14.2%</td>
</tr>
<tr>
<td>Infective complications</td>
<td>64</td>
<td>8.4%</td>
</tr>
<tr>
<td>Mechanical complications</td>
<td>39</td>
<td>5.1%</td>
</tr>
</tbody>
</table>
Complications over three periods

- **1999-2003**
 - Any compli: 67
 - Mech: 43
 - Infection: 5
 - Metabolic: 22
 - Others: 18

- **2004-2008**
 - Any compli: 71
 - Mech: 36
 - Infection: 14
 - Metabolic: 38
 - Others: 4

- **2009-2013**
 - Any compli: 39
 - Mech: 3
 - Infection: 10
 - Metabolic: 27
 - Others: 5

Legend:
- **Number**
- **Any compli**
- **Mech**
- **Infection**
- **Metabolic**
- **Others**
NO SCREENING

DELAYED DIAGNOSIS

LATE/NO TREATMENTS

POOR OUTCOMES

INCREASED COSTS
THANK YOU

mohandaskm@gmail.com