ABCs OF PICU NUTRITION

Dr. Pushkar Srivastava,
MD, MRCPCH(UK),
Consultant in Paediatrics and Neonatology
Apollo Hospitals International Limited, Ahmedabad.
Nutritional assessment and support

Who needs nutritional support?

Everyone

FEN?
Nutritionist’s input in PICU rounds.

NABH / JCI accreditation requirement
Nutritional goals being met?
Nutritional Assessment

Anthropometry
Height, Weight, Head Circumference

Labs
Albumin, Prealbumin, Urea, Creatinine.
How much Calorie and Proteins intake?

Ideal: Indirect Calorimetry
Theoretical for our scenario

Formula / Tables based requirements
Titrate based on anthropometry/labs
PICU Malnutrition

• Malnutrition:
 • Impairs immune function.
 • Interferes with wound healing.
 • Prolongs hospitalisation.
 • Increases risk of infection and death.
PICU Overfeeding

- Overfeeding:
 - Excess CO2 production & increased minute ventilation
 - Pulmonary oedema & respiratory failure
 - Hyperglycemia, which may increase infection rates
 - Lipogenesis due to increased insulin production
 - Hepatic complications: fatty liver, intrahepatic cholestasis
Balancing Act
DRI vs. BEE

<table>
<thead>
<tr>
<th>Age</th>
<th>DRI (kcal/kg)</th>
<th>BEE (kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3 months</td>
<td>102</td>
<td>54</td>
</tr>
<tr>
<td>4-6 months</td>
<td>82</td>
<td>54</td>
</tr>
<tr>
<td>7-12 months</td>
<td>80</td>
<td>51</td>
</tr>
<tr>
<td>13-35 months</td>
<td>82</td>
<td>56</td>
</tr>
<tr>
<td>3 years</td>
<td>85</td>
<td>57</td>
</tr>
<tr>
<td>4 years</td>
<td>70</td>
<td>47</td>
</tr>
<tr>
<td>5-6 years</td>
<td>65</td>
<td>47</td>
</tr>
<tr>
<td>7-8 years</td>
<td>60</td>
<td>47</td>
</tr>
</tbody>
</table>
Daily energy & protein requirements

Total Calories : BEE X Stress Factor

Total Proteins : RDA X Stress Factor
Table 1. Estimate BEE for weight and sex

<table>
<thead>
<tr>
<th>Age 1 wk to 10 mths</th>
<th>Age 11 to 36 mths</th>
<th>Age 3 to 16 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt (kg)</td>
<td>MR (kcal/day)</td>
<td>Wt (kg)</td>
</tr>
<tr>
<td>M or F</td>
<td>M</td>
<td>F</td>
</tr>
<tr>
<td>3.5</td>
<td>202</td>
<td>9.0</td>
</tr>
<tr>
<td>4.0</td>
<td>228</td>
<td>9.5</td>
</tr>
<tr>
<td>4.5</td>
<td>252</td>
<td>10.0</td>
</tr>
<tr>
<td>5.0</td>
<td>278</td>
<td>10.5</td>
</tr>
<tr>
<td>5.5</td>
<td>305</td>
<td>11.0</td>
</tr>
<tr>
<td>6.0</td>
<td>331</td>
<td>11.5</td>
</tr>
<tr>
<td>6.5</td>
<td>358</td>
<td>12.0</td>
</tr>
<tr>
<td>7.0</td>
<td>384</td>
<td>12.5</td>
</tr>
<tr>
<td>7.5</td>
<td>410</td>
<td>13.0</td>
</tr>
<tr>
<td>8.0</td>
<td>437</td>
<td>13.5</td>
</tr>
<tr>
<td>8.5</td>
<td>463</td>
<td>14.0</td>
</tr>
<tr>
<td>9.0</td>
<td>490</td>
<td>14.5</td>
</tr>
<tr>
<td>9.5</td>
<td>514</td>
<td>15.0</td>
</tr>
<tr>
<td>10.0</td>
<td>540</td>
<td>15.5</td>
</tr>
<tr>
<td>10.5</td>
<td>566</td>
<td>16.0</td>
</tr>
<tr>
<td>11.0</td>
<td>593</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Table 2: Determining Stress Factor

<table>
<thead>
<tr>
<th>Clinical Condition</th>
<th>Stress factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance</td>
<td>1.0</td>
</tr>
<tr>
<td>Fever</td>
<td>12% per degree > 37</td>
</tr>
<tr>
<td>Routine surgery, minor sepsis</td>
<td>1.1</td>
</tr>
<tr>
<td>Cardiac failure</td>
<td>1.25</td>
</tr>
<tr>
<td>Major surgery</td>
<td>1.2</td>
</tr>
<tr>
<td>Sepsis</td>
<td>1.4</td>
</tr>
<tr>
<td>Catch-up grpwhth</td>
<td>1.5</td>
</tr>
<tr>
<td>Trauma (inc TBI)</td>
<td>1.5 – 1.7</td>
</tr>
</tbody>
</table>
Energy Needs: Intubated Infants

Require > BEE
Activity not significant
Calories used predominately for growth

Provide >BEE for infants 0-12 months despite intubation/sedation
(~75-80% of the DRI for age)
0-3 mon (~80kcal/kg)
4-12 mon (~65kcal/kg)
Energy Needs: Intubated Children > 12 months

Goal = BEE

Schofield equation, Harris Benedict equation, ASPEN

3y: ~60kcal/kg
4-8y: ~50kcal/kg

Activity and injury factors not routinely used

BEE x 1.2 for intubated burn pts
Energy Needs: Non-Intubated

Goal = DRIs

Malnourished: Catch up growth needs
(DRI x IBW) ÷ actual wt (kg)

Overweight: BMI for age >85th%ile
(BMI @50th%ile x actual wt) ÷ actual BMI
200 kCal less than average for age
Protein Requirements

<table>
<thead>
<tr>
<th>Age</th>
<th>DRI (g/kg/day)</th>
<th>PICU (g/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6 months</td>
<td>1.52</td>
<td>2-3</td>
</tr>
<tr>
<td>7-12 months</td>
<td>1.20</td>
<td>2-3</td>
</tr>
<tr>
<td>13-23 months</td>
<td>1.05</td>
<td>2-3</td>
</tr>
<tr>
<td>2-3 years</td>
<td>1.05</td>
<td>1.5-2</td>
</tr>
<tr>
<td>4-13 years</td>
<td>0.95</td>
<td>1.5-2</td>
</tr>
<tr>
<td>14-18 years</td>
<td>0.85</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Parenteral Nutrition Calories

- Extubated:
 - provide ~10% < DRIs
 - due to lack of thermogenic effect of food

- Intubated:
 - BEE or
 - ~80% DRI
Continuous Monitoring

Monitor Anthropometry and Labs

Titrate Calories and Proteins
Fluid Requirement

• Holliday-Segar formula
 • 0-10 Kg : 100ml/kg/day
 • 10-20 Kg : 1000 ml + 50 ml for each Kg > 10 Kg
 • > 20 Kg : 1500 ml + 20 ml for each Kg > 20 Kg

• Other fluids and medications
 • Fluid restricted status.
Nutrition: Available Routes

- PPN
- TPN
- Intravenous alimentation
- Nasoduodenal tube
- Nasojejunal tube
- Nasogastric tube
- Gastrostomy tube
- Jejunostomy tube
Parenteral Nutrition
PPN vs. TPN

PPN
- Peripheral access
- <900 mOsm/L
- Max D12.5%
- Can go up to D15% with non-central PICC
- Usually requires increased fluid allowance

TPN
- Central access
- No osmolarity limitations
- Typical max dextrose usually D25%.
Parenteral Dextrose

- 40-60% of total calories / 60-75% of NP calories
 - Glucose infusion rate (GIR)
 - 3.4 kcal/g dextrose
 - Increased intake: Hyperglycemia, infections, hepatic steatosis, Refeeding syndrome.
GIR/Dextrose Guidelines

<table>
<thead>
<tr>
<th>Age</th>
<th>Initiate</th>
<th>Advance</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td><1yr</td>
<td>~6-9mg/kg/min</td>
<td>1-2mg/kg/min</td>
<td>Goal: 10-12mg/kg/min Max: 14mg/kg/min</td>
</tr>
<tr>
<td>1-10yr</td>
<td>1-2mg/kg/min</td>
<td>1-2mg/kg/min</td>
<td>Max: 8-10mg/kg/min</td>
</tr>
<tr>
<td>>10yr (adolescents)</td>
<td>1-2mg/kg/min >IVF GIR</td>
<td>1-2mg/kg/min</td>
<td>Max: 5-6mg/kg/min</td>
</tr>
</tbody>
</table>
Parenteral Lipids

- Initiate @ 1g/kg/day, Advance @ 1g/kg/day
 - Maximum:
 - < 1 yr: 3g/kg/day,
 - 1-10 yr: 2-3g/kg/day,
 - >10 yr: 1-2.5g/kg/day

- Usual 20-50 % of calories.< 60% kcal via lipid (ketosis)

- Maximum lipid clearance 0.15g/kg/hr, TG 100-150 mg/dl

- Carnitine supplements for TPN > 2-4/ 52
 - 10mg/kg/day. May go upto 20mg/kg/day (Carnisure, Torrent)
20% Intralipid

- Essential Fatty Acids (EFA)
 - Omega-6 source,
 - Increased inflammation
 - PNALD/IFALD

- Concentrated source of kcal
 - 2kcal/ml
PNALD/IFALD

Avoid macronutrient overfeeding in general

Decrease lipids to 1 g/kg

Omega 3 FA (Fish oil based)(SMOFLipid20%)

GIR ≤ 12.5mg/kg/min

Initiate EN asap (even trophic feeds)

Strict asepsis protocols
Parenteral AA Guidelines

<table>
<thead>
<tr>
<th>Age</th>
<th>Initiate</th>
<th>Advance</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td><1yr</td>
<td>1-2g/kg/day</td>
<td>1g/kg/day</td>
<td>4g/kg/day</td>
</tr>
<tr>
<td>1-10yr</td>
<td>1-2g/kg/day</td>
<td>1g/kg/day</td>
<td>1.5-3g/kg/day</td>
</tr>
<tr>
<td>>10yr (adolescents)</td>
<td>1g/kg/day</td>
<td>1g/kg/day</td>
<td>0.8-2.5g/kg/day</td>
</tr>
</tbody>
</table>

Calorie contribution: 4kcal/g AA
PN Electrolyte Dosing Guidelines

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>Preterm Neonates</th>
<th>Infants/Children</th>
<th>Adolescents/Children >50kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>2-5meq/kg</td>
<td>2-5meq/kg</td>
<td>1-2meq/kg</td>
</tr>
<tr>
<td>K</td>
<td>2-4meq/kg</td>
<td>2-4meq/kg</td>
<td>1-2meq/kg</td>
</tr>
<tr>
<td>Ca</td>
<td>2-4meq/kg</td>
<td>0.5-4meq/kg</td>
<td>10-20meq/day</td>
</tr>
<tr>
<td>Phos</td>
<td>1-2mmol/kg</td>
<td>0.5-2mmol/kg</td>
<td>10-40mmol/day</td>
</tr>
<tr>
<td>Mg</td>
<td>0.3-0.5meq/kg</td>
<td>0.3-0.5meq/kg</td>
<td>10-30meq/day</td>
</tr>
</tbody>
</table>

IV Phosphate is now available (3mmol/ml Phosphorus +4.5mEq/ml Potassium) Potphos (Neon)
How to order TPN

1. Calculate: Fluid volume available for TPN
2. Calculate: Estimated energy requirement
3. Calculate: Protein Requirement and protein calories
5. Calculate: Carbohydrate Requirement and check GIR
6. Calculate Additives (Electrolytes, Minerals, Vitamins)
7. Calculate Osmolality:
 1. \[((\text{g Aminoacid/L} \times 10) + (\text{g Dextrose/L} \times 5) + (\text{Na+K+Ca in mEq/L}) \times 2) \]
15 Kg Child for TPN

3Y/M, 15 Kg, TPN.

Normal labs.

Goal : Age appropriate weight gain.
TPN Calculation

- **Fluid requirement:**
 - Fluid = 1000ml + 50 ml X 5 kg = 1250 ml

- **Estimated energy requirement:**
 - 15 X 85 Kcal/kg = 1275 Kcal

- **Protein requirement:**
 - Protein = 15 X 3g/day = 45 grams
 - Protein calories = 45g x 4 Kcal/g = 180 Kcal.
TPN Calculation

• Lipid Requirement:
 • 15 X 3 g/kg = 45 g
 • Lipid calories:
 • 45 g X 10 Kcal/g = 450 Kcal (35% of EER)

• Carbohydrate calories:
 • EER – (Protein calories + Lipid calories)
 • 1275 – (180+450) = 645 Kcal (51% of EER)
 • Carbohydrate requirement:
 • 645 Kcal / 3.4 Kcal/g = 190 g Carbohydrate
TPN Calculation

- GIR:
 - 190 g = 190,000 mg
 - 190,000 mg/ 15 kg = 12667 mg/kg/day
 - 12667/ 1440 min in a day = 8.8 mg/kg/min

- Final PN solution will contain
 - 45 g AA (14% EER)
 - 45 g IVFE 20% (35 % EER)
 - 190 g Glucose (51% EER)
TPN Calculation

• Total PN volume
 • 45 g from 10% AA → 450 ml 10% AA
 • 45 g from 20% IVFE → 225 ml 20% IVFE
 • 190 g from 50% Glucose → 380 ml 50% D
 • Na= 30 mEq (2 mEq/kg) = 60 ml 3% NaCl
 • K = 30 mEq (2 mEq/kg) = 15 ml KCl (Potclor)
 • Total Volume: 450+225+380 +60+15 = **1130 ml**.

• Still have **120 ml for meds**

• Final Dextrose Concentration = 16.8%(190g/1130 ml)

• Final Osmolality = (450 + 950 + 120) = 1520 mOsm/L

• MVI: 2.5 ml
Enteral Nutrition
Introduction of EN

Patient considered for Enteral Nutrition?

Nil enterally?
- Discuss with PICU Consultant
- High Risk Abdomen (<48 hours post heart surgery, > 2 inotropes, open chest, central cooling, < 24 hours of cardiac arrest)
- Consider PN
- Reass for EN daily

Absolute Risk
- Mechanical Bowel Obstruction
- Current confirmed NEC
- Significant GI bleed
- Ischaemic Bowel

Relative risk
- Suspected NEC
- High Risk Abdomen (<48 hours post heart surgery, > 2 inotropes, open chest, central cooling, < 24 hours of cardiac arrest)
- Abdominal distension
- Ileus
- High output stoma
- Complex GI surgery
- Intractable diarrhoea

Discuss with PICU Consultant --- Decide EN +/- PN
Commence enteral feed at 0.5-1.0ml/kg/hr. If restarting following a high GRV, recommence at previously tolerated rate. If restarting a feed following a period of fasting, recommence at previously tolerated rate where appropriate.

Feed at this rate for 4 hours

Check for Gastric Residual Volume (GRV). Is it >5ml/kg or 200 ml?

- **No**
 - Replace GRV. Increase feed by 0.5ml/kg/hr & continue at this rate for 4 hrs. Recheck GRV. Is it > 5ml/kg or 200ml.

- **Yes**
 - Replace GRV. Stop feeding for 2 hrs. Recheck GRV. Is it > 5ml/kg or 200ml.
 - **No**
 - Replace GRV. Recheck GRVs every 4 hours and increase at 0.5ml/kg/hr until maximum fluid allowance or target rate of feed reached.
 - **Yes**
 - Treat constipation, hypokalemia. Consider prokinetics, decreasing opiates, Osmolality, decreasing rate. Consider NJ tube/PN.
Thank you